Uncover hidden risks

Watch how the Wiz platform can expose unseen risks in your cloud environment without drowning your team in alerts.

Cloud Workload Security Explained

Cloud workload security, also known as cloud workload protection, is a set of security controls and tools aimed at protecting cloud-based workloads.

Wiz Experts Team
6 min read

What is cloud workload security?

Cloud workload security, also known as cloud workload protection, is a set of security controls and tools aimed at protecting cloud-based workloads.

Cloud workloads are tasks that run in the form of an application, or service, and are housed entirely or partly in the cloud. They consume resources on a cloud platform such as compute and memory. These cloud workloads can comprise application code, customer information, business secrets, and intellectual property, all of which can be vulnerable to cyberattacks. Bad actors can gain unauthorized access to these resources using hardcoded API keys and secrets, overprivileged access, and unpatched applications. 

Threat actors primarily target cloud workloads because they hold the key to the wider application that the workload belongs to, including data produced and network connections between the user and the software. If a workload segment is compromised, the application as a whole is disrupted.

Despite the growing significance of compliance, organizations face challenges in coping with evolving cyber threat tactics. Although cloud providers offer security controls to protect workloads, they have limitations. Often, stolen credentials end up compromising the entire system or leaving sensitive data open to attack.

Benefits of cloud workload security

Organizations need to enforce robust security practices to secure cloud workloads and maintain compliance. Some of the benefits of cloud workload security include:

  • Protecting your sensitive information from unauthorized access, data breaches, and DDoS attacks while empowering you to maintain data integrity with confidence.

  • Aiding compliance efforts with various regulations, or to meet standards within a specific industry.

  • Bolstering your security posture by protecting data end-to-end and minimizing risks.

  • Providing a holistic view of assets and resources for efficient monitoring and incident response.

  • Ensuring security best practices are implemented, such as IAM and RBAC, to limit illegitimate exposure to cloud resources.

  • Introducing automation which can reduce human risks and enhance threat detection and remediation.

  • Centralizing workload management regardless of how diverse your cloud environment is.

  • Reducing the complexity of working with different cloud environments.

  • Avoiding business disruptions from security threats and bad actors so that you can move ahead with your growth strategies.

Threats to cloud workloads

Hackers can compromise cloud-native applications through several tactics. With more enterprises moving their applications and data to cloud platforms, the threat is ever-increasing. The first step toward securing cloud workloads is understanding how cyber attackers operate. Here are the most frequent attacks on cloud workloads:

ThreatDescription
Illegitimate access to workloadsAttackers are moving away from brute-force attacks on enterprise applications. Instead, they rely on stolen or compromised credentials to access resources illegally. To combat this, security teams need strong access control policies while enforcing strict secrets management.
DDoS attacks to trick your defense systemA DDoS attack involves overwhelming applications with such a high volume of traffic that it forces the system to fail or malfunction. Cloud workloads are especially susceptible to these attacks as they are exposed to a much wider global user base than a traditional client-server application.
Malware and ransomware for extortionCyberattackers could introduce malware or ransomware within cloud workloads through misconfigurations or vulnerabilities. These types of attacks involve hijacking of systems to hold organizations ransom.
Misconfiguration of security controlsIf your security settings aren’t configured carefully, it can eventually lead to data breaches and application outages. Misconfigured credentials, access controls, or firewalls work to the advantage of hackers.
API and interface vulnerabilitiesAs much as APIs help accelerate cloud application development, they can add complexity and become another cause of security vulnerabilities. Insecure APIs can allow bad actors into a system, and the result can be a ripple effect if the system is well-connected using APIs.
Using insecure supply chain resourcesUsing third-party components and code blocks always pose threats to cloud workloads. They can allow backdoor entry for cyber threats to introduce malicious code and other vulnerabilities into the system. With the prominence of open source tools, this is a growing risk in the cloud-native ecosystem.

Components of a cloud workload that need to be secured

Securing cloud workloads involves a comprehensive strategy extending across the cloud environment. The key target areas for cyber attackers include: 

  • Cloud management consoles: These consoles allow you to control how your cloud environment operates through administration rights, configuration settings, usage monitoring, and billing management. Since it can be the focal point of your entire cloud operations, threat actors frequently attempt to breach the cloud management console.

  • Virtual infrastructure: Attackers could target your virtual infrastructure, such as your virtual servers, through third-party tools such as Ansible and Chef. To avoid these kinds of attacks, you must secure access to automation tools through robust access control strategies.

  • Hardcoded secrets: When developers store their applications in public repositories, they often leave access keys, tokens, and SSH keys within the applications. Hackers use these keys and try to gain illegal access to APIs, which have direct access to cloud servers. You need to remove secrets and keys from the application code. 

  • DevOps console: Along with a cloud management console, you must secure DevOps consoles and all the tools you use to manage your CI/CD pipelines. In most cases, these can be in your cloud vendor platform and should be secured and monitored.

Cloud workload security and runtime protection

Runtime security is a subset and critical component of cloud workload protection. It focuses explicitly on real-time monitoring and workload protection during the execution stage. Your runtime security strategy must work together with overall workload protection to ensure effective mitigation of threats.

Here are some similarities between runtime protection and workload security: 

  • Both involve real-time monitoring of the entire cloud ecosystem.

  • Like cloud workload security, runtime protection tools help you identify threats like malware, illegitimate access, and other anomalies.

  • They both investigate application performance and behaviors for abnormal deviations.

  • Runtime security solutions are dynamic to suit the scaling up and down of resources, similar to cloud workload protection.

  • These solutions are interoperable with other cloud security strategies, including DevSecOps practices.

Cloud workload security best practices

For adequate protection of your cloud workloads, follow these best practices:

  • Automate cloud workload management

Use automation solutions when dealing with hybrid or multi-cloud environments to avoid human risks, such as misconfigurations. The complexity of these approaches increases the possibility of human errors, which can ultimately lead to cybersecurity incidents. Minimize human intervention through automation during critical tasks such as infrastructure configuration, monitoring, software updates or patches, and resource provisioning.

You can automate provisioning and enforcing security policies by using IaC (Infrastructure-as-Code) solutions. You can also observe and track the performance of your applications using monitoring and logging tools. This will help you proactively identify and troubleshoot issues as and when they arise. 

  • Limit access or privilege to sensitive workloads

Over-privileged access can be a chink in your security shield to be exploited by threat actors. It is often a primary target for attackers who exploit loosely configured privileges to invade your network and breach data. To avoid this, implement strong IAM (Identity and access management) strategies such as RBAC (role-based access control), the zero-trust policy, and reduce privileged access to business-critical data.

  • Centralize your monitoring and tracking efforts

Having comprehensive visibility of the resources you have spread across cloud environments will effectively secure your workloads. Usually, in multi-cloud and hybrid cloud architectures, monitoring is siloed, with every cloud provider offering varying levels of logging options. Blind spots are created when there isn’t a consistent monitoring and tracking policy. 

Cloud workload security relies on complete workload visibility, not just of the workloads themselves, but also their interconnections across the environment

With a centralized monitoring solution, you can have a holistic view of the state of workloads across cloud environments on a single dashboard. This helps you assess application health, identify anomalies, and initiate remediation steps.

  • Secure containers with runtime security

Example of a runtime detection

Unlike in monolithic applications, endpoint security won’t work with containers. A runtime security tool, instead, will secure containerized workloads distributed across multiple environments and platforms. It can help identify misconfigurations and improper privileges while monitoring the container environment, including networking and file systems. 

To implement these cloud workload security best practices you need a purpose-build cloud workload protection platform (CWPP). Let’s look at what this is.

Pro tip

This Wiz Research team has found that 58% of cloud environments have at least one publicly exposed workload with a cleartext long-term cloud key stored in it. This greatly increases the risk of lateral movement in the VPC and between VPCs.

Learn more

Cloud workload security with CWPP

A CWPP is a cloud workload security solution that protects your cloud workloads by identifying and eliminating risks within your applications. It automates workload monitoring across on-prem servers, VMs, and serverless functions.

A robust CWPP will offers a range of benefits that will help with cloud workload security, including:

  • Identifying misconfigurations in your cloud applications allows you to remove vulnerabilities to harden your security posture.

  • Segmenting your network to improve visibility and prevent malicious traffic from entering your system at a granular level.

  • Easy integration with other security solutions such as cloud security posture management (CSPM) tools.

  • Proactive detection of suspicious behavior of applications and servers through behavioral monitoring.

  • Malware detection, for threats that can seep into cloud workloads.

When selecting a CWPP solution to protect your cloud assets, consider the following:

  • The CWPP solution you select must extend support to every cloud environment, including hybrid and multi-cloud architectures.

  • It should be easy to deploy so it doesn’t become an operational overhead.

  • It should be capable of monitoring your cloud resources continuously for threats and anomalies.

  • Your CWPP needs to automate risk management, compliance with policies, and vulnerability prioritization.

Secure you cloud workloads with a market-leading CWPP

Frost & Sullivan has recognized Wiz as one of the top CWPP solutions in its 2023 Frost Radar report. Wiz is built to provide end-to-end workload protection, including hosts, VMs, containers, and serverless functions. Wiz’s CWPP solution is bolstered by in-house R&D programs for proactive data breach prevention so you don’t just have a tool, but an entire security task force at your disposal. 

The Frost & Sullivan survey recognized Wiz saying its "promising product roadmap reflects its commitment to continuous innovation in addressing evolving cloud security challenges.’

At a time when risks to cloud workloads are on the rise, you can experience robust workload protection with CWPP through Wiz. Get a demo here.

Secure your workloads from build-time to run-time

Learn why CISOs at the fastest growing companies choose Wiz to secure their cloud environments.

Get a demo

Continue reading

What is DevSecOps?

DevSecOps, which stands for Development, Security, and Operations, is a software development practice that emphasizes integrating security considerations throughout the entire development lifecycle, from initial design to deployment and ongoing maintenance.

Kubernetes Alternatives for Container Orchestration

Wiz Experts Team

This blog post explores the world of container orchestration tools beyond Kubernetes, highlighting cloud provider tools and open-source alternatives that promise to redefine how we deploy and manage applications.

What is a Reverse Shell Attack?

Wiz Experts Team

A reverse shell attack is a type of cyberattack where a threat actor establishes a connection from a target machine (the victim's) to their machine.

What is Cloud Encryption?

Cloud encryption is the process of transforming data into a secure format that's unreadable to anyone who doesn't have the key to decode it.

Microservices Security Best Practices

Microservices security is the practice of protecting individual microservices and their communication channels from unauthorized access, data breaches, and other threats, ensuring a secure overall architecture despite its distributed nature.

AI Security Tools: The Open-Source Toolkit

We’ll take a deep dive into the MLSecOps tools landscape by reviewing the five foundational areas of MLSecOps, exploring the growing importance of MLSecOps for organizations, and introducing six interesting open-source tools to check out