
Cloud Vulnerability DB
A community-led vulnerabilities database
vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1.
Source: NVD
Free Vulnerability Assessment
Evaluate your cloud security practices across 9 security domains to benchmark your risk level and identify gaps in your defenses.
Get a personalized demo
"Best User Experience I have ever seen, provides full visibility to cloud workloads."
"Wiz provides a single pane of glass to see what is going on in our cloud environments."
"We know that if Wiz identifies something as critical, it actually is."